LIS Seafloor Mapping Initiative

5/13/2016
Kevin O’Brien, CT DEEP, Office of Long Island Sound Programs
Ivar Babb, University of Connecticut

2016 Long Island Sound Research Conference
CT Coastal Management

• Operating Principle:
 – Balance human uses/needs with protection, preservation & restoration of the natural functions & benefits of coastal environments.
CT Coastal Management - Context

• Cross Sound Cable:
 – Electrical transmission line
 – Information provided failed to adequately identify submerged bedrock.
 • **Result:** Permittee unable to comply with conditions requiring cable to be buried at a suitable depth.
CT Coastal Management - Context

• Islander East Pipeline:
 – Proposed natural gas pipeline
 – Detailed benthic information provided, but only for proposed route.
 – Passed through areas of sensitive resources (e.g., shellfishing)

• Result: CT DEEP unable to determine if route was better or worse than adjacent or alternative options.
CT Coastal Management - Context

• Key Point:
 – Resource Managers need accurate, relevant information (scope & extent) to enable the best possible decision-making.
 – If not, then decisions are prone to be:
 • Reactionary on a project-by-project basis
 • Missing the key or greatest possible context
LIS Seafloor Mapping Initiative

- LIS Cross Sound Cable Settlement Agreement:
 - Compliance issues with 2 CT cable permits in LIS created $6M fund for research/restoration projects;
 - Led by bi-state, multi-agency Steering Committee
 - CTDEEP, NYDEC, EPA LISS, CT & NY SeaGrants, NYDOS
 - Priority Goal: provide data products for resource management & infrastructure siting in LIS
 - 2004 - 2009; (asst’d discussions/workshops)
 - 2009 - now (implementation planning & execution)
LIS Seafloor Mapping Initiative

• Milestone: Collaborative Partners Identified (2010)
LIS Seafloor Mapping Initiative

• Milestone: Identified Target Areas (2011)
 – Engage stakeholders to determine where in LIS to target mapping efforts and why;
 – Technique adapted/improved from earlier efforts in CA;
 • CT process subsequently used/improved in WA
 – Divided map of LIS into a grid & surveyed experts to:
 • Identify critical **areas**
 • Identify the dominant **issue** & provide supporting **details**
 • Assign a **priority**
LIS Seafloor Mapping Initiative

• Milestone: Identified Target Areas (2011)

Highest Priority Areas for Benthic Mapping in LIS
LIS Seafloor Mapping Initiative

• Milestone: Identified Target Areas (2011)
 – Share core issues of:
 • Planning, Regulatory, Resource Management
 – Details supporting issues are:
 • Have Knowledge Gaps
 • Represent Significant Natural Areas
 • Relevant to Infrastructure
 • Have High Use/Potential for Use Conflicts
 – Timeframe to address:
 • Need for data soon (1-2 years)
LIS Seafloor Mapping Initiative

 - Define and implement technical components for a mapping program focusing on:
 - Assess implementation strategies
 - Report on methods, analysis, results and conclusions/recommendations

Acoustic Intensity / Seafloor Topography	Benthic Habitats & Ecology
Sediment Texture & Grain Size	Physical Environments
Sedimentary Environments	Data Management System
LIS Seafloor Mapping Initiative

Acoustic Data:
- Compilation of previous NOAA data & new NOAA & Stony Brook surveys
LIS Seafloor Mapping Initiative

Acoustic Data:
- Provides depth & backscatter data
- Derived products – TRI, slope, rugosity
- Most of the remaining data products directly or indirectly depends on this
LIS Seafloor Mapping Initiative

Acoustic Data: Shallow water mapping was also conducted by URI using an interferometric (vs beam forming) sonar.
LIS Seafloor Mapping Initiative

Sediment Texture & Environments:

- Provides detailed bottom composition description (e.g., gravel, sand, mud, silt, etc.) and dynamics (e.g., erosion, deposition, etc.)

- Also provided rapid sediment chemistry (TOC, N, Pb, Zn, Cu)
LIS Seafloor Mapping Initiative

Sediment Texture & Environments:

– Sub-bottom profiling used to develop sediment environments

Example – depositional layers

Example – non-deposition/erosion
LIS Seafloor Mapping Initiative

Ecological Characterization:

– Backscatter data utilized for sample site selection
LIS Seafloor Mapping Initiative

Ecological Characterization:

– Characterized benthic habitats for infauna and epifauna using the SEABOSS and Kraken2

SEABOSS

Kraken2 ROV
LIS Seafloor Mapping Initiative

Ecological Analysis:
– Stony Brook University focused sampling assessment
LIS Seafloor Mapping Initiative

Seafloor Classification & Ecological Analysis:

- Generated numerous data products including individual species distribution, biogenic features, species richness and diversity maps.
LIS Seafloor Mapping Initiative

Ecological Analysis:

- Seasonal analyses showed areas with ecological stability and others with seasonal change.
LIS Seafloor Mapping Initiative

Ecological Analysis:

– Seasonal analyses showed ecological stability and change

Stable hard substrates

Seasonally variable soft substrates

Connecticut Department of Energy and Environmental Protection
LIS Seafloor Mapping Initiative

Physical Oceanography:

– Data on temperature, salinity, currents, bottom stress, etc., based on observations and modeling.
LIS Seafloor Mapping Initiative

Data Management:

– Leveraged an existing NSF funded system at LDEO to store and share results: http://www.marine-geo.org/portals/lis/
LIS Seafloor Mapping Initiative

• Post Pilot:
 – Fall/Winter 2014 - 2016:
 • SC evaluated processes/deliverables with input from outside reviewers;
 • SC & teams made adjustments to both implementation strategies and data products;
 • Notable exception – acoustic data collection in ELIS area by NOAA in Fall 2015 to fill in large gap areas from earlier surveys

 – 2016 going forward:
 • Developing work plans for Phase II eastern LIS area
 • Initiate (or continue) data collection/analysis activities
LIS Seafloor Mapping Initiative

• Outcomes:
 – Overall, SC feels pilot was successful
 • Generated useful data and examples of how data can be visualized and synthesized
 • Demonstrated that teaming approach can be an effective way to approach a complex, large scale effort
 – Areas for improvement
 • Better definition and application of data standards
 • Improved coordination and communication (between teams as well as between teams and SC)
LIS Seafloor Mapping Initiative

• Outcomes:
 – Report and Appendices:
 • http://tinyurl.com/LISCableFundPilotReport
 • http://tinyurl.com/LISCableFundPilotReportApps
 – YouTube Video from ROV Dives:
 • https://www.youtube.com/watch?v=tz_QX4R2hg0
 – Stefaniak et al. 2014:
Questions?

Kevin O’Brien: 860-424-3432 or kevin.obrien@ct.gov
Ivar Babb: 860-405-9121 or ivar.babb@uconn.edu